Minimal K-Covering Set Algorithm based on Particle Swarm Optimizer
نویسنده
چکیده
For random high density distribution in wireless sensor networks in this article have serious redundancy problems. In order to maximize the cost savings network resources for wireless sensor networks, extend the life network, this paper proposed a algorithm for the minimal k-covering set based on particle swarm optimizer. Firstly, the network monitoring area is divided into a number of grid points. Utilization rate and the node minimum are used as optional objective, and a combinatorial optimization mathematical model is established. Then using Particle Swarm Optimizer to solve optimization model, thus the optimal network coverage and the utilization od sensor nodes are obtained. Simulation results that algorithm has reduced node redundancy and the energy consumption, and improved the network coverage effectively.
منابع مشابه
Damage detection of skeletal structures using particle swarm optimizer with passive congregation (PSOPC) algorithm via incomplete modal data
This paper uses a PSOPC model based non-destructive damage identification procedure using frequency and modal data. The objective function formulation for the minimization problem is based on the frequency changes. The method is demonstrated by using a cantilever beam, four-bay plane truss and two-bay two-story plane frame with different scenarios. In this study, the modal data are provided nume...
متن کاملAn Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کاملParameter Estimation of Conditional Random Fields Model By Improved Particle Swarm Optimizer
A new parameter estimation algorithm based on improved particle swarm optimizer is proposed to improve the precision and recall rate of conditional random fields model. Aggregation degree of particle swarm is utilized to control particle swarm optimizer’s early local convergence, the relative change ratio of log-likelihood between iterations is employed to end its iterations, and the inertia fa...
متن کاملSolving Biobjective Set Covering Problem Using Binary Cat Swarm Optimization Algorithm
The set cover problem is a classical question in combinatorics, computer science and complexity theory. It is one of Karp’s 21 NP-complete problems shown to be NP-complete in 1972. Several algorithms have been proposed to solve this problem, based on genetic algorithms (GA), Particle Swarm Optimizer (PSO) and in recent years algorithms based in behavior algorithms based groups or herds of anima...
متن کاملA NICHING PARTICLE SWARM OPTIMIZER R.Brits,
This paper describes a technique that extends the unimodal particle swarm optimizer to efficiently locate multiple optimal solutions in multimodal problems. Multiple subswarms are grown from an initial particle swarm by monitoring the fitness of individual particles. Experimental results show that the proposed algorithm can successfully locate all maxima on a small set of test functions during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JNW
دوره 8 شماره
صفحات -
تاریخ انتشار 2013